Non-linear control with Lyapunov stability applied to spacecraft with flexible structures

Author:

Lin Y-Y1,Lin G-L1

Affiliation:

1. National Cheng Kung University Department of Aeronautics and Astronautics Tainan, Taiwan

Abstract

The method of input-output feedback linearization incorporating the Lyapunov stability analysis was applied in this study to design a stable control law for the problem of reorienting a spacecraft with flexible appendages. Only three mutually orthogonal torque actuators on the hub are required for the proposed control law to perform a desired simultaneous multi-axis reorientation. Mathematical modelling of the system gives a set of coupled ordinary and partial differential equations, which includes attitude dynamics of the spacecraft and dynamics of the flexible structures. To simplify the system equations for controller design, deformations of the flexible structures were assumed to be small and mode-shape functions were applied first. Furthermore, the set of non-linear equations governing the attitude motions was transformed into a Euler parameters representation. Through the method of feedback linearization and vector subtraction in the Euler parameters space, the dynamics of the attitude errors were formulated as a set of stable second-order ordinary differential equations with constant coefficients, which are the gains of the attitude feedback control law. Vibration control of the flexible structures in the form of adaptive damping was also derived from the procedure of Lyapunov stability analysis and becomes a part of the attitude feedback control law. The stability of the overall dynamic system can be achieved by tuning the selected control gains in the Lyapunov analysis. Attitude manoeuvre of a model spacecraft was tested using the proposed control law and the simulation results were compared for the cases with and without adaptive structural damping. This study also shows that, by selecting the adaptive damping coefficients, the optimal time and torque manoeuvre of the flexible spacecraft can be determined.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Satellite Attitude Control;Advances in Intelligent and Soft Computing;2012

2. Nonlinear control and stability analysis of spacecraft attitude recovery;IEEE Transactions on Aerospace and Electronic Systems;2006-07

3. Stability Analysis for Digital PD Control of Flexible Systems Including Damping;JSME International Journal Series C;2006

4. Stability Analysis for Digital PD Control of Flexible Systems;JSME International Journal Series C;2006

5. Adaptive control of nonlinear dynamical systems using a model reference approach;Meccanica;2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3