The dynamics and stability of circular cylindrical shells containing and submerged in flowing fluid using a higher order boundary element method

Author:

Ugurlu B1,Ergin A1

Affiliation:

1. Department of Naval Architecture and Marine Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey

Abstract

This paper presents a higher order, three-dimensional boundary element method for investigating the dynamics and stability of elastic structures containing and/or submerged in flowing fluid. The method developed can be applied to any shape of elastic structures partially or completely in contact with fluid. In the mathematical model, it is assumed that the fluid is ideal (i.e. inviscid, incompressible and its motion is irrotational). The fluid—structure interaction forces are calculated using the higher order boundary element method, and the finite element method is employed for the structural analysis. In this study, it is assumed that the elastic structure vibrates in its in vacuo modes when it is in contact with flowing fluid, and that each mode gives rise to a corresponding surface pressure distribution on the wetted surface of the structure. The in vacuo dynamic properties of the dry elastic structure are obtained by using standard finite element software. In the wet part of the analysis, the wetted surface of the elastic structure is idealized by using appropriate boundary elements, referred to as hydrodynamic panels. Over each hydrodynamic panel, higher order distributions (linear and quadratic) are adopted in the present study in order to obtain a better convergence, in contrast to Ugurlu and Ergin (2006) assuming constant distribution over each hydrodynamic panel. The fluid—structure interaction forces are calculated in terms of the generalized added mass coefficients, generalized Coriolis fluid force coefficients, and generalized centrifugal fluid force coefficients. To assess the influence of flowing fluid and end support conditions (e.g. simply supported ends, clamped ends, and cantilever cylindrical shell) on the dynamic response behaviour and stability of the cylindrical shells, the non-dimensional wet frequencies and associated vibration modes are presented as a function of the non-dimensional axial flow velocity, and the calculations compare well with the analytical solutions found in the open literature.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis on the Aeroelastic Stability of Open Cylindrical Shells in Subsonic Airflow Using the Theoretical and Two-way CFD/CSD Coupled Methods;The Volume 24, No 3, September 2019;2019-09

2. Численное исследование влияния дефектов поверхности на устойчивость цилиндрической трубы с жидкостью;Вестник Самарского государственного технического университета. Серия «Физико-математические науки»;2018

3. Loads for use in the design of ships and offshore structures;Ocean Engineering;2014-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3