Indirect selective laser sintering of apatite—wollostonite glass—ceramic

Author:

Xiao K1,Dalgarno K W2,Wood D J3,Goodridge R D4,Ohtsuki C5

Affiliation:

1. School of Mechanical Engineering, University of Leeds, Leeds, UK

2. School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, UK

3. Dental Institute, University of Leeds, Leeds, UK

4. Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK

5. Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan

Abstract

This paper develops an indirect selective laser sintering (SLS) processing route for apatite—wollastonite (A—W) glass—ceramic, and shows that the processing route, which can create porous three-dimensional products suitable for bone implants or scaffolds, does not affect the excellent mechanical and biological properties of the glass—ceramic. ‘Green parts’ with fine integrity and well-defined shape have been produced from glass particles of single-size range or mixed-size ranges with acrylic binder in various ratios by weight. A subsequent heat treatment process has been developed to optimize the crystallization process, and an infiltration process has been explored to enhance mechanical strength. Three-point bending test results show flexural strengths of up to 102 MPa, dependent on porosity, and simulated body fluid (SBF) tests show that the laser sintered porous A—W has comparable biological properties to that of conventionally produced A—W.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3