Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method

Author:

Andreaus U1,Colloca M1

Affiliation:

1. Department of Structural and Geotechnical Engineering, ‘Sapienza’ University of Rome, Rome, Italy

Abstract

In cementless total hip replacement surgery the conditions for micromotion initiation at the bone—stem interface and the role of stair climbing versus gait in promoting incipient slipping deserve attention. The goal of the present paper was to propose a finite element approach for analysing the structural behaviour of hip joint prostheses under physiological loadings and boundary conditions, which allows the prediction of micromotion initiation with low computational effort. In this paper, three-dimensional (3D) finite element analyses were performed of intact and implanted human femurs in order to address the above-mentioned problems. Accurate finite element models based on computed tomography images of a human femur were employed; tetrahedral elements were used to construct the models and the contact options of a full bond between the femoral bone and stem were also used. The shear strains at the contact between femoral bone and stem were evaluated. Two loading cases, namely walking and stair climbing, were applied to investigate the effect of different loading conditions on the shear strain patterns. Shear strains in the z direction can be reasonably considered a significant stimulus of slip initiation or fibrous tissue formation or both at the bone—stem interface, whereas shear strains in the x— y plane can be assumed to be a sensible measurement of the tendency to implant—bone micromotion under torsional loads. Comparisons with other studies are complicated by the difference in the methods and testing conditions used. If mobilization is to be initiated, rotational displacements at the interface should be sensible and significant parameters, i.e. the material, should be distorted to some extent. Thus, for a particular point on the bone—metal interface, the maximum shear strain in any direction within the interface plane will indicate the likelihood of slippage initiation at that point. The different femur states (intact and implanted) and loading conditions (walking and stair climbing) are compared. The stair-climbing loads resulted in the highest strains observed under any conditions, either intact or implanted.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3