The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage

Author:

Forster H1,Fisher J1

Affiliation:

1. University of Leeds School of Mechanical Engineering UK

Abstract

Reciprocating motion friction tests were conducted upon cartilage-on-metal contacts while subjected to a constant load. Initial friction coefficients were compared with repeat friction coefficients following a sufficient load removal period. The repeat friction coefficients were marginally higher than the initial values and both were primarily dependent on the loading time. It was concluded that while a wear component had been identified, which modestly increased friction coefficients, the overriding parameter influencing friction was loading time. The authors postulate that fluid phase load carriage (being dependent on loading time) within the articular cartilage is largely responsible for low friction coefficients in the mixed and boundary lubrication regimes. This mechanism has been referred to as biphasic lubrication. Both synovial fluid and Ringer's solution were used as lubricants. Over the assessed 120 min loading time friction coefficients rose from 0.005 (for both lubricants) after 5 s to 0.50 and 0.57 for synovial fluid and Ringer's solution respectively. Synovial fluid was found to significantly reduce friction coefficients compared to Ringer's solution over broad ranges of the assessed loading times (p<0.05). Stylus and non-contacting laser profilometry were successfully employed to provide reliable, quantitative and accurate measures of surface roughness. Laser profilometry before and after a continuous sliding friction test revealed a significant increase in surface roughness from Ra = 0.8(±0.2) μm to Ra = 2.1 (±0.2) μm, (p < 0.0005); confirming that surface wear was occurring. Scanning electron microscopy (SEM) revealed the typical highly orientated collagen fibres of the superficial tangential zone. Environmental SEM (ESEM) of fully hydrated cartilage specimens provided largely featureless images of the surface which suggested that sample preparation for conventional SEM was detrimental to the authenticity of the cartilage surface appearance using SEM. Two distinct acellular, non-collagenous surface layers were identified using ESEM and transmission electron microscopy (TEM); respectively referred to as the boundary layer and surface lamina. The phospholipid/glycoprotein based boundary layer will provide boundary lubrication during intimate contact of opposing cartilage surfaces. The surface lamina, being a continuum of the proteoglycan interfibrillar matrix, is present to prevent fibrillation of the underlying collagen fibres. Both layers may contribute to the time dependent frictional response of articular cartilage. Although laser profilometry did reveal surface wear which was consistent with a small increase in friction, the primary variable controlling the friction coefficient was the period of loading.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 221 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3