Affiliation:
1. Kyushu University Department of Intelligent Machinery and Systems, Faculty of Engineering Japan
2. Kyushu University Graphic Science, Faculty of Engineering Japan
3. Fukuoka University Department of Mechanical Engineering, Faculty of Engineering Japan
Abstract
To examine the lubrication mechanisms in both natural synovial joints and artificial joints with artificial cartilages, pendulum tests of pig shoulder joints and simulator tests of sliding pairs of a stainless steel spherical component and natural articular cartilage or artificial cartilage have been conducted. Firstly, it was shown in pendulum tests of pig shoulder joints that both concentration of hyaluronic acid or viscosity and adsorbed film formation of proteins and phospholipids exerted a significant effect on frictional behaviour in swinging motion immediately after a loading of 100 N. Under a high load of 1 kN, low friction was observed under wide-ranging viscosity conditions, since a high load similar to body weight probably enhanced the squeeze film effect due to improved congruity. Next, frictional behaviour of sliding pairs in knee joint models, consisting of a stainless steel spherical surface and either specimens of pig tibial cartilage or polyvinylalcohol (PVA) hydrogel, was examined during walking in simulator tests. In these tests, the influences of lubricant viscosity and addition of protein on frictional behaviour were evaluated. For both compliant materials, the appropriate addition of γ-globulin to sodium hyaluronate (HA) solution maintained low friction and protected rubbing surfaces under thin film conditions. These phenomena are discussed from the viewpoint of adaptive multimode lubrication.
Subject
Mechanical Engineering,General Medicine
Cited by
138 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献