Polyethylene insert damage in unicondylar knee replacement: A comparison of in vivo function and in vitro simulation

Author:

Harman M1,Affatato S1,Spinelli M1,Zavalloni M1,Stea S1,Toni A1

Affiliation:

1. Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy

Abstract

Modification of knee joint wear simulation methods has included ‘anatomic attachment’ of unicondylar knee replacements (UKR) onto synthetic femurs with material properties and morphology similar to human femurs. The present study assesses the effect of such modification by comparing the damage patterns on UKR polyethylene inserts after in vitro simulation using standard and modified simulation methods with those on inserts retrieved after in vivo function. Three groups of UKR inserts were evaluated after retrieval (Explant Group, n = 17) or after knee joint wear simulation with the components attached to standard metal blocks (Standard Group, n = 6) or synthetic femurs (Anatomic Group, n = 6). All UKR had similar non-conforming articular surfaces. Articular damage patterns (mode, frequency, and area) were quantified using digital image photogrammetry. Although some common damage modes were noted, knee joint wear simulation with standard or ‘anatomic’ attachment did not generate damage pattern sizes similar to the explanted UKR. A focal damage pattern consistent with contact between the metal femoral articular surface and the polyethylene inserts was evident on all inserts, but only the Explant Group had evidence of dispersed damage dominated by abrasive modes. Synthetic femurs added complexity to the wear simulation without generating wear patterns substantially more similar to those observed on retrieved inserts.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3