A manufacturing model of carbide-tipped spherical milling cutters

Author:

Chen C-K1,Lai H-Y1,Tang Y2

Affiliation:

1. National Cheng-Kung University Department of Mechanical Engineering Tainan, Taiwan

2. Harbin Institute of Technology Department of Mechanical Engineering Harbin, People's Republic of China

Abstract

The paper presents a manufacturing model for use in grinding the front-end surfaces of a carbide-tipped spherical milling cutter. The concepts of radial equidistant lines and oblique equidistant surfaces are presented. Based upon these concepts, a model of the cutting edge of a spherical milling cutter is derived by solution for the intersection of the spherical front-end surface of the cutter and the equation of a sphere. A special mechanism model is also presented for grinding the rear cutting-edge surface of the cutter. To ensure that the mechanism model is valid, the cutting-edge curve of the cutter is also on the rear cutting-edge surface. The associated geometric and manufacturing parameters are further optimized to ensure that the best quality of the carbide-tipped spherical milling cutter can be achieved. The mechanism is also used to study the manufacturability of spherical milling cutters for slightly varying specifications. A numerical example is presented to illustrate the effectiveness of the proposed modelling procedure for producing carbide-tipped spherical milling cutters. Numerical results indicate that the proposed manufacturing model and grinding procedure are capable of producing a family of carbide-tipped spherical milling cutters with an accuracy up to the user-provided specific tolerance. Some major contributions of the proposed approach are summarized in the conclusions.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference7 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3