Affiliation:
1. Chalmers University of Technology Division of Solid Mechanics Gothenburg, Sweden
Abstract
A finite element (FE)-based computational model is developed for the calculation of residual stresses in steel as induced by a local thermal shock. Subroutines to handle phase transformations and constitutive behaviour including volumetric expansion and transformation-induced plasticity are added to a commercial FE code. Sliding contact problems with application to railway technology are studied. Six examples of wheel flat formation are investigated in detail. In all of them rather high tensile stresses are found in the wheel rim in a domain below the top layer of phase transformations. For those combinations of train speed, wheel load and sliding duration, where the brittle martensite phase is found, surface cracks are likely. The predicted tensile stresses may propagate these cracks further into the rim material and thus cause spalling.
Reference19 articles.
1. Jergéus J. Wheel flats and martensite formation in railway wheel treads—a literature survey. Report F156, Division of Solid Mechanics, Chalmers University of Technology, Gothenburg, Sweden, 1992, 19 pp.
2. Factors of wheel flats occurrence and preventive measures
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献