Computational fluid dynamics prediction of intake ingestion relevant to short take-off and vertical landing aircraft

Author:

Behrouzi P1,McGuirk J J1

Affiliation:

1. Loughborough University Department of Aeronautical and Automotive Engineering Loughborough, Leicestershire, UK

Abstract

Intake ingestion can cause several major problems (e.g. compressor surge and stall) for short take-off and vertical landing (STOVL) aircraft operating in ground effect. Numerical predictions of the flowfield associated with a generic twin-jet plus intake model operating under ingestion flow conditions are reported using computational fluid dynamics (CFD) techniques. The results have been compared with laser Doppler anemometry (LDA) validation measurements taken in a specially designed test case configuration. The k-ε turbulence model and both first-order and second-order (QUICK) convection discretization schemes were employed. Fine meshes and second-order accurate discretization were found essential to produce solutions close to grid independence. A reasonable prediction of the general flow pattern has been achieved. Several features of the mean velocity field were close to the experimental results; however, the k-ε model was shown to produce significant errors in the prediction of the forward penetration distance of the ground sheet flow and in the shape of velocity profiles and turbulence levels near to the intake.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of unsteady-RANS approach against steady-RANS approach for predicting twin impinging jets in a cross-flow;Cogent Engineering;2014-07-31

2. The application of laser measurement techniques to aerospace flows;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2004-01-01

3. Numerical studies of twin‐jet impingement for STOVL flow application;Journal of the Chinese Institute of Engineers;2000-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3