Heat-Transfer Mechanisms in an In-Line Tube Bundle Subject to a Particulate Cross Flow

Author:

Sterritt D C1,Murray D B1

Affiliation:

1. Department of Mechanical Engineering, Trinity College, Dublin, Ireland

Abstract

The effect of solid particles in suspension on heat transfer for tubes located within a square tube bundle of pitch-diameter ratio 1.75 has been investigated. Tests conducted at a Reynolds number of 6000 with mean particle diameters of 58 and 127 μm at a mass loading ratio of 0.5 kg particles/kg air indicate that heat transfer is enhanced at all locations by the presence of the particles. However, at a Reynolds number of 12 000 there is a net decrease in the mean Nusselt number at all positions, with the exception of the first row. Assessment of the main mechanisms by which particles modify heat transfer in in-line tube arrays suggests that the enhancement of heat transfer is a consequence of the increased thermal capacity of the suspension, whereas the reduction in Nusselt number is considered to result from a change in the flow structure and turbulence within the array.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-Flow Heat Transfer in The Freeboard Region of a Fluidized Bed;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;1996-05

2. Effects of Variable Solids Loading on Gas-Solid Heat Transfer in a Staggered Tube Array;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;1994-07

3. Local enhancement of heat transfer in a particulate cross flow—II Experimental data and predicted trends;International Journal of Multiphase Flow;1994-06

4. Heat transfer — a review of 1992 literature;International Journal of Heat and Mass Transfer;1994-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3