Interactive assistant tool for the evaluation of kinematic patterns and EMG signals in patients with a forearm injury
-
Published:2021-12-31
Issue:
Volume:
Page:32-42
-
ISSN:2523-6776
-
Container-title:Revista de Ingeniería Tecnológica
-
language:en
-
Short-container-title:JTEN
Author:
Jiménez-González Fernando C.1ORCID, Torres-Ramírez Dulce Esperanza1ORCID
Affiliation:
1. Universidad Tecnológica de Ciudad Juárez
Abstract
Subjective feelings feedbacks are commonly employed by a patient during forearm rehabilitation therapy without real-time data, leading to suboptimal recovery results in some patients. Technological innovations in the field of assisted rehabilitation have enabled the evolution of real-time monitoring systems. In this paper, interactive assistant development is presented as the interface to define the relationship between the kinematics patterns and the electromyographic signals during the forearm rehabilitation routine. Leap Motion (LM) and Shimmer3 EMG sensors read the routine behavior by following the movements that appear on the software. Real-time targets are programmed to lead the necessary forearm movements that the therapist sets to determine the recovery progress. The integration of software and hardware shows a dataset basis on interaction variables such as arm velocity, arm position, performance rate, and electrical muscle pulse. The results obtained from tests show that the system works effectively within a range of movement of 9 to 88 degrees in rotation about the axes, and velocities under 190 mm/s show stable movement representation on software. Finally, the outcomes ranges show an alternative tool to evaluate patients with a forearm injury.
Reference27 articles.
1. Akdoğan, E., Aktan, M. E., Koru, A. T., Arslan, M. S., Atlıhan, M., & Kuran, B. (2018). Hybrid impedance control of a robot manipulator for wrist and forearm rehabilitation: Performance analysis and clinical results. Mechatronics, 49, 77-91. 2. Alimanova, M., Borambayeva, S., Kozhamzharova, D., Kurmangaiyeva, N., Ospanova, D., Tyulepberdinova, G., ... & Kassenkhan, A. (2017, April). Gamification of hand rehabilitation process using virtual reality tools: Using leap motion for hand rehabilitation. In 2017 First IEEE International Conference on Robotic Computing (IRC) (pp. 336-339). IEEE. 3. Andersen, V., Pedersen, H., Steiro Fimland, M., Peter Shaw, M., Jorung Solstad, T. E., Stien, N. ... & Hole Saeterbakken, A. (2021). Efectos Agudos de las Bandas Elásticas como Resistencia o Asistencia sobre la EMG, la Cinética y la Cinemática durante el Peso Muerto en Hombres Entrenados en Fuerza-Ciencias del Ejercicio. Revista de Educación Física, 1(1). 4. Daoud, M. I., Alhusseini, A., Ali, M. Z., & Alazrai, R. (2020). A Game-Based Rehabilitation System for Upper-Limb Cerebral Palsy: A Feasibility Study. Sensors, 20(8), 2416. 5. Fernández-González, P., Carratalá-Tejada, M., Monge-Pereira, E., Collado-Vázquez, S., Baeza, P. S. H., Cuesta-Gómez, A., ... & Cano-de la Cuerda, R. (2019). Leap motion-controlled video game-based therapy for upper limb rehabilitation in patients with Parkinson’s disease: a feasibility study. Journal of neuroengineering and rehabilitation, 16(1), 1-10.
|
|