Interactive assistant tool for the evaluation of kinematic patterns and EMG signals in patients with a forearm injury

Author:

Jiménez-González Fernando C.1ORCID,Torres-Ramírez Dulce Esperanza1ORCID

Affiliation:

1. Universidad Tecnológica de Ciudad Juárez

Abstract

Subjective feelings feedbacks are commonly employed by a patient during forearm rehabilitation therapy without real-time data, leading to suboptimal recovery results in some patients. Technological innovations in the field of assisted rehabilitation have enabled the evolution of real-time monitoring systems. In this paper, interactive assistant development is presented as the interface to define the relationship between the kinematics patterns and the electromyographic signals during the forearm rehabilitation routine. Leap Motion (LM) and Shimmer3 EMG sensors read the routine behavior by following the movements that appear on the software. Real-time targets are programmed to lead the necessary forearm movements that the therapist sets to determine the recovery progress. The integration of software and hardware shows a dataset basis on interaction variables such as arm velocity, arm position, performance rate, and electrical muscle pulse. The results obtained from tests show that the system works effectively within a range of movement of 9 to 88 degrees in rotation about the axes, and velocities under 190 mm/s show stable movement representation on software. Finally, the outcomes ranges show an alternative tool to evaluate patients with a forearm injury.

Publisher

ECORFAN

Reference27 articles.

1. Akdoğan, E., Aktan, M. E., Koru, A. T., Arslan, M. S., Atlıhan, M., & Kuran, B. (2018). Hybrid impedance control of a robot manipulator for wrist and forearm rehabilitation: Performance analysis and clinical results. Mechatronics, 49, 77-91.

2. Alimanova, M., Borambayeva, S., Kozhamzharova, D., Kurmangaiyeva, N., Ospanova, D., Tyulepberdinova, G., ... & Kassenkhan, A. (2017, April). Gamification of hand rehabilitation process using virtual reality tools: Using leap motion for hand rehabilitation. In 2017 First IEEE International Conference on Robotic Computing (IRC) (pp. 336-339). IEEE.

3. Andersen, V., Pedersen, H., Steiro Fimland, M., Peter Shaw, M., Jorung Solstad, T. E., Stien, N. ... & Hole Saeterbakken, A. (2021). Efectos Agudos de las Bandas Elásticas como Resistencia o Asistencia sobre la EMG, la Cinética y la Cinemática durante el Peso Muerto en Hombres Entrenados en Fuerza-Ciencias del Ejercicio. Revista de Educación Física, 1(1).

4. Daoud, M. I., Alhusseini, A., Ali, M. Z., & Alazrai, R. (2020). A Game-Based Rehabilitation System for Upper-Limb Cerebral Palsy: A Feasibility Study. Sensors, 20(8), 2416.

5. Fernández-González, P., Carratalá-Tejada, M., Monge-Pereira, E., Collado-Vázquez, S., Baeza, P. S. H., Cuesta-Gómez, A., ... & Cano-de la Cuerda, R. (2019). Leap motion-controlled video game-based therapy for upper limb rehabilitation in patients with Parkinson’s disease: a feasibility study. Journal of neuroengineering and rehabilitation, 16(1), 1-10.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3