Selección de un método de aprendizaje automático para clasificar patrones biomarcadores de lesiones precancerosas de las cuerdas vocales

Author:

Siordia-Vásquez Xóchitl1ORCID,Villagrán-Villegas Luz Yazmin1ORCID,Patiño-Ortiz Miguel2ORCID,Rojas-Hernández Miguel Ángel1ORCID

Affiliation:

1. Universidad Veracruzana

2. Instituto Politécnico Nacional

Abstract

The National Survey on Drug, Alcohol and Tobacco, 2016-2017, notes that 15.6 million Mexicans are active smokers and, by 2030, expect the death of 8 million cancers of the larynx or lung. Therefore, the World Health Organization (WHO) recommends detecting precancerous lesions of the larynx. This is possible, as they are characterized by a biomarker pattern manifested by the alteration of the biomechanical interpretation of the vocal cords, regardless of the sex and age of the smoker. The goal of this article is to evaluate three machine learning methods: neural networks, Gaussian networks, and decision tree to determine the method that best solves the problem of detecting patterns of precancerous vocal cord injury biomarkers. It uses the WEKA tool and a knowledge bank, endorsed by NOM-012-SSA3-2012, with 250 patterns, and provided by the Luis Guillermo Ibarra National Institute of Rehabilitation, Ibarra. The performance of the methods was compared by ROC curves and confusion matrices, under the criteria established by ISO-5725. The decision tree the method that best responds to the detection of patterns of biomarkers of precancerous lesions of the vocal cords.

Publisher

ECORFAN

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3