Energy Enhancement of WSN with Deep Learning based SOM Scheduling Algorithm

Author:

S. S. Sivaraju ,C. Kumar

Abstract

Energy efficiency is one of the primary requirements for designing a successful Wireless Sensor Network (WSN) model. The WSN systems are generally made with a group of nodes that are operated with a small size battery device. To improve the energy efficiency of such WSNs several methodologies like clustering approach, mobile node technique and optimal route planning designs were developed. Scheduling method is yet an efficient model that is widely used in WSN applications, that allows the nodes to be operated only for a certain prescribed time. The proposed work utilizes the Self Organizing Maps (SOM) approach for improving the performances of the scheduling algorithms to a certain limit. SOM is a kind of artificial neural network that analyzes the problem based on competitive learning rather than the backpropagation methods. The work compares the proposed algorithm with the traditional Ant Colony and Software Defined Network approaches, wherein the proposed approach has shown an improvement in terms of energy conservation and network lifetime.

Publisher

Inventive Research Organization

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3