Underwater Image Restoration and Object Detection

Author:

R Rohan,R Vishnu Prakash,K T Shibin,K Akshay,E Akhila

Abstract

Underwater environments present unique challenges for imaging due to factors such as light attenuation, scattering, and colour distortion. This research combines advanced CNN models like CBAM(convolutional Block Attention Mod-ule) and VGG16 with state-of-the-art object detection methods of CNN like YOLO or RCNN to enhance the visual quality of underwater images and to detect the objects based on an accuracy rate. Leveraging the various capabilities of the VGG16 model, pretrained on extensive datasets, the system efficiently restores degraded underwater images by capturing and learning intricate features. Integrating the CBAM model enhances this process by selectively attending to salient features while suppressing irrelevant ones, thereby refining the restoration results. Additionally, the combined architecture facilitates object detection within the restored images, enabling the identification and localization of submerged objects with high accuracy. Currently the work presents short review on the existing methods of underwater image restoration and a suggests method employing the CBAM(convolutional Block Attention Mod-ule) and VGG16 to overcome the prevailing challenges in underwater object detection. In future, the research aims to present a website that would be more useful for the students , researchers and the underwater explorers.

Publisher

Inventive Research Organization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3