Human anterior cruciate ligament-derived mesenchymal stem cells for regenerative medicine applications

Author:

Gupta Ashim1ORCID,Karki Rabindra2,Maffulli Nicola3,Albers Christine2,Roberts Melissa H.2,El-Amin III Saadiq F.4

Affiliation:

1. Regenerative Orthopaedics, Noida, Uttar Pradesh, India

2. Springfield, Illinois, USA

3. Centre for Sports and Exercise Medicine, London, UK

4. Lawrenceville, Georgia, USA

Abstract

Background: The anterior cruciate ligament (ACL) has poor healing capabilities and is the most commonly injured knee ligament. Although ACL repair is being highly studied, the current treatment involves reconstructive surgery utilizing autografts or allografts, which have limitations. The use of Mesenchymal Stem Cells (MSCs) as a possible therapeutic option has grown. ACL-derived MSCs are likely to be the best source because studies have shown that target tissue derived stem cells will better differentiate into the target tissue than the stem cells derived from non-target ones. However, the existing literature discusses only the isolation of a mixed population of MSCs. Here we present the isolation, differentiation and characterization of human ACL-derived MSCs according to the International Society for Cellular Therapy (ISCT) criteria.The ACL tissue was enzymatically digested. Separation of MSCs from the crude mixture of cells was then performed by fluorescence activated cell sorting (FACS) analysis. The isolated population were passaged in specific induction medium to differentiate them into adipocyte, osteocytes and chondrocytes. The cells were then further characterized with respect to their growth curve, population doubling time, colony forming ability, anchorage independent growth, and cell surface markers. The cells were finally examined for their tumorigenic potential by cell cycle analysis.Immunoprofiling via FACSs showed an average isolation rate for cells carrying MSCs markers of 5.5%. Cells exhibited spindle-shaped morphology, and immunocytochemistry confirmed the expression of appropriate cell surface markers. The growth curve showed distinct lag and log phase. Over agar assay demonstrated no anchorage independent growth, but clonogenic potential was observed post-culture on plastic Petri dishes. The cells showed a population doubling time of about 1.5 days. Oil Red O, Alizarin Red S, and Alcian Blue staining confirmed adipogenic, osteogenic and chondrogenic differentiation, respectively. Cell cycle analysis displayed more ACL-derived MSCs in G/G phase compared to BMSCs, showing that the isolates were non-tumorigenic. The presence of MSCs within the human ACL was confirmed via ISCT criteria, paving the way for their potential use for future ACL reconstructions. Although BMSCs have been the choice for regenerative purposes, making use of MSCs derived from ACL ligament will cut down the burden of trauma one has to undergo to obtain the Bone Marrow. Moreover, it is more convenient to harvest MSCs from otherwise discarded ACL. Finally, MSCs derived from the target tissue are believed to better differentiate to the ligament tissue than the bone derived MSCs.

Publisher

IP Innovative Publication Pvt Ltd

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3