Deep Transfer Learning & Beyond: Transformer Language Models in Information Systems Research

Author:

Gruetzemacher Ross1ORCID,Paradice David2ORCID

Affiliation:

1. Wichita State University, W. Frank Barton School of Business

2. Auburn University, Harbert College of Business

Abstract

AI is widely thought to be poised to transform business, yet current perceptions of the scope of this transformation may be myopic. Recent progress in natural language processing involving transformer language models (TLMs) offers a potential avenue for AI-driven business and societal transformation that is beyond the scope of what most currently foresee. We review this recent progress as well as recent literature utilizing text mining in top IS journals to develop an outline for how future IS research can benefit from these new techniques. Our review of existing IS literature reveals that suboptimal text mining techniques are prevalent and that the more advanced TLMs could be applied to enhance and increase IS research involving text data, and to enable new IS research topics, thus creating more value for the research community. This is possible because these techniques make it easier to develop very powerful custom systems and their performance is superior to existing methods for a wide range of tasks and applications. Further, multilingual language models make possible higher quality text analytics for research in multiple languages. We also identify new avenues for IS research, like language user interfaces, that may offer even greater potential for future IS research.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference199 articles.

1. Text Analytics to Support Sense-Making in Social Media: A Language-Action Perspective

2. Don’t Mention It? Analyzing User-Generated Content Signals for Early Adverse Event Warnings

3. The Impact of User Personality Traits on Word of Mouth: Text-Mining Social Media Platforms

4. Ashutosh Adhikari Achyudh Ram Raphael Tang and Jimmy Lin. 2019. DocBERT: BERT for document classification. arXiv:1904.08398. Retrieved from https://arxiv.org/abs/1904.08398.

5. Daniel Adiwardana Minh-Thang Luong David R. So Jamie Hall Noah Fiedel Romal Thoppilan Zi Yang Apoorv Kulshreshtha Gaurav Nemade Yifeng Lu and Quoc V. Le. 2020. Towards a human-like open-domain chatbot. arXiv:2001.09977. Retrieved from https://arxiv.org/abs/2001.09977.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3