SimNet

Author:

Li Lingda1,Pandey Santosh2,Flynn Thomas1,Liu Hang2,Wheeler Noel3,Hoisie Adolfy1

Affiliation:

1. Brookhaven National Laboratory, Upton, NY, USA

2. Stevens Institute of Technology, Hoboken, NJ, USA

3. Laboratory for Physical Sciences, College Park, MD, USA

Abstract

While cycle-accurate simulators are essential tools for architecture research, design, and development, their practicality is limited by an extremely long time-to-solution for realistic applications under investigation. This work describes a concerted effort, where machine learning (ML) is used to accelerate microarchitecture simulation. First, an ML-based instruction latency prediction framework that accounts for both static instruction properties and dynamic processor states is constructed. Then, a GPU-accelerated parallel simulator is implemented based on the proposed instruction latency predictor, and its simulation accuracy and throughput are validated and evaluated against a state-of-the-art simulator. Leveraging modern GPUs, the ML-based simulator outperforms traditional CPU-based simulators significantly.

Funder

U.S. Department of Energy

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

Reference58 articles.

1. 2020. DGX A100: Universal System for AI Infrastructure. https://www.nvidia.com/en-us/data-center/dgx-a100/ 2020. DGX A100: Universal System for AI Infrastructure. https://www.nvidia.com/en-us/data-center/dgx-a100/

2. Martín Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , 2016 . Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16). 265--283. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16). 265--283.

3. Predicting Execution Times With Partial Simulations in Virtual Memory Research: Why and How

4. Cross-architecture performance prediction (XAPP) using CPU code to predict GPU performance

5. I. Baldini , S. J. Fink , and E. Altman . 2014. Predicting GPU Performance from CPU Runs Using Machine Learning . In 2014 IEEE 26th International Symposium on Computer Architecture and High Performance Computing. 254--261. https://doi.org/10.1109/SBAC-PAD.2014.30 Proc. ACM Meas. Anal. Comput. Syst. , Vol. 6 , No. 2, Article 25. Publication date : June 2022 . 25:22 Lingda Li, Santosh Pandey, Thomas Flynn, Hang Liu, Noel Wheeler, and Adolfy Hoisie I. Baldini, S. J. Fink, and E. Altman. 2014. Predicting GPU Performance from CPU Runs Using Machine Learning. In 2014 IEEE 26th International Symposium on Computer Architecture and High Performance Computing. 254--261. https://doi.org/10.1109/SBAC-PAD.2014.30 Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 25. Publication date: June 2022. 25:22 Lingda Li, Santosh Pandey, Thomas Flynn, Hang Liu, Noel Wheeler, and Adolfy Hoisie

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TAO: Re-Thinking DL-based Microarchitecture Simulation;Abstracts of the 2024 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems;2024-06-10

2. TAO: Re-Thinking DL-based Microarchitecture Simulation;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2024-05-21

3. Scalable Deep Learning-Based Microarchitecture Simulation on GPUs;SC22: International Conference for High Performance Computing, Networking, Storage and Analysis;2022-11

4. DeepQueueNet;Proceedings of the ACM SIGCOMM 2022 Conference;2022-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3