nSimplex Zen : A Novel Dimensionality Reduction for Euclidean and Hilbert Spaces

Author:

Connor Richard1ORCID,Vadicamo Lucia2ORCID

Affiliation:

1. University of St Andrews, St Andrews, UK

2. CNR-ISTI, Pisa, Italy

Abstract

Dimensionality reduction techniques map values from a high dimensional space to one with a lower dimension. The result is a space which requires less physical memory and has a faster distance calculation. These techniques are widely used where required properties of the reduced-dimension space give an acceptable accuracy with respect to the original space. Many such transforms have been described. They have been classified in two main groups: linear and topological . Linear methods such as Principal Component Analysis (PCA) and Random Projection (RP) define matrix-based transforms into a lower dimension of Euclidean space. Topological methods such as Multidimensional Scaling (MDS) attempt to preserve higher-level aspects such as the nearest-neighbour relation, and some may be applied to non-Euclidean spaces. Here, we introduce nSimplex Zen , a novel topological method of reducing dimensionality. Like MDS, it relies only upon pairwise distances measured in the original space. The use of distances, rather than coordinates, allows the technique to be applied to both Euclidean and other Hilbert spaces, including those governed by Cosine, Jensen–Shannon and Quadratic Form distances. We show that in almost all cases, due to geometric properties of high-dimensional spaces, our new technique gives better properties than others, especially with reduction to very low dimensions.

Funder

AI4Media - A European Excellence Centre for Media, Society and Democracy AI4MEDIA

SUN - Social and hUman ceNtered XR SUN

National Centre for HPC, Big Data and Quantum Computing CNHPC

Publisher

Association for Computing Machinery (ACM)

Reference55 articles.

1. Accessed: 2023-01-19. Large powers of sine appear Gaussian—why? Retrieved from https://math.stackexchange.com/questions/2293330. (Accessed: 2023-01-19).

2. Database-friendly random projections

3. Signature quadratic form distances for content-based similarity

4. Foundations of Data Science

5. High-Dimensional Space

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3