Introduction to the special issue on semantic integration

Author:

Doan AnHai1,Noy Natalya F.2,Halevy Alon Y.3

Affiliation:

1. University of Illinois

2. Stanford University

3. University of Washington

Abstract

Semantic heterogeneity is one of the key challenges in integrating and sharing data across disparate sources, data exchange and migration, data warehousing, model management, the Semantic Web and peer-to-peer databases. Semantic heterogeneity can arise at the schema level and at the data level. At the schema level, sources can differ in relations, attribute and tag names, data normalization, levels of detail, and the coverage of a particular domain. The problem of reconciling schema-level heterogeneity is often referred to as schema matching or schema mapping . At the data level, we find different representations of the same real-world entities (e.g., people, companies, publications, etc.). Reconciling data-level heterogeneity is referred to as data deduplication, record linkage , and entity/object matching . To exacerbate the heterogeneity challenges, schema elements of one source can be represented as data in another. This special issue presents a set of articles that describe recent work on semantic heterogeneity at the schema level.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3