Frequent subtree mining on the automata processor

Author:

Sadredini Elaheh1,Rahimi Reza1,Wang Ke1,Skadron Kevin1

Affiliation:

1. University of Virginia

Publisher

ACM Press

Reference16 articles.

1. A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau. 2011. Sentiment analysis of twitter data. InProceedings of the Workshop on Languages in Social Media. Association for Computational Linguistics.

2. C. Bo, K. Wang, J. Fox, and K. Skadron. 2016. Entity Resolution Acceleration using the Automata Processor. InProceedings of the IEEE International Conference on Big Data. IEEE.

3. Y. Chi and J. Kok. 2001. Frequent subtree mining-an overview.Fundamenta Informaticae21.

4. P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes. 2014. An efficient and scalable semiconductor architecture for parallel automata processing.IEEE Transactions on Parallel and Distributed Systems (TPDS)25, 12.

5. R. Iváncsy and I. Vajk. 2007. Automata Theory Approach for Solving Frequent Pattern Discovery Problems.International Journal of Computer, Electrical, Automation, Control and Information Engineering, World Academy of Science, Engineering and Technology1, 8.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ngAP: Non-blocking Large-scale Automata Processing on GPUs;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 1;2024-04-17

2. Asynchronous Automata Processing on GPUs;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2023-02-27

3. hAP: A Spatial-von Neumann Heterogeneous Automata Processor with Optimized Resource and IO Overhead on FPGA;Proceedings of the 2023 ACM/SIGDA International Symposium on Field Programmable Gate Arrays;2023-02-12

4. CAMA: Energy and Memory Efficient Automata Processing in Content-Addressable Memories;2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2022-04

5. Sunder: Enabling Low-Overhead and Scalable Near-Data Pattern Matching Acceleration;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3