Affiliation:
1. The University of Auckland, New Zealand
2. Lehigh University, USA
3. University of Illinois at Chicago, USA
4. Macquarie University, Australia
Abstract
Machine learning (ML) models have been widely applied to various applications, including image classification, text generation, audio recognition, and graph data analysis. However, recent studies have shown that ML models are vulnerable to membership inference attacks (MIAs), which aim to infer whether a data record was used to train a target model or not. MIAs on ML models can directly lead to a privacy breach. For example, via identifying the fact that a clinical record that has been used to train a model associated with a certain disease, an attacker can infer that the owner of the clinical record has the disease with a high chance. In recent years, MIAs have been shown to be effective on various ML models, e.g., classification models and generative models. Meanwhile, many defense methods have been proposed to mitigate MIAs. Although MIAs on ML models form a newly emerging and rapidly growing research area, there has been no systematic survey on this topic yet. In this article, we conduct the first comprehensive survey on membership inference attacks and defenses. We provide the taxonomies for both attacks and defenses, based on their characterizations, and discuss their pros and cons. Based on the limitations and gaps identified in this survey, we point out several promising future research directions to inspire the researchers who wish to follow this area. This survey not only serves as a reference for the research community but also provides a clear description for researchers outside this research domain. To further help the researchers, we have created an online resource repository, which we will keep updated with future relevant work. Interested readers can find the repository at https://github.com/HongshengHu/membership-inference-machine-learning-literature.
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Reference246 articles.
1. Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In CCS. ACM, 308–318.
2. A Survey of Unsupervised Generative Models for Exploratory Data Analysis and Representation Learning
3. Invariant risk minimization;Arjovsky Martin;arXiv preprint arXiv:1907.02893,2019
4. Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers
5. Lei Jimmy Ba and Rich Caruana. 2014. Do deep nets really need to be deep? In NeurIPS. 2654–2662.
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献