Constant Time Graph Neural Networks

Author:

Sato Ryoma1ORCID,Yamada Makoto1,Kashima Hisashi1

Affiliation:

1. Kyoto University, RIKEN AIP, Sakyo-ku, Kyoto, Japan

Abstract

The recent advancements in graph neural networks (GNNs) have led to state-of-the-art performances in various applications, including chemo-informatics, question-answering systems, and recommender systems. However, scaling up these methods to huge graphs, such as social networks and Web graphs, remains a challenge. In particular, the existing methods for accelerating GNNs either are not theoretically guaranteed in terms of the approximation error or incurred at least a linear time computation cost. In this study, we reveal the query complexity of the uniform node sampling scheme for Message Passing Neural Networks, including GraphSAGE, graph attention networks (GATs), and graph convolutional networks (GCNs). Surprisingly, our analysis reveals that the complexity of the node sampling method is completely independent of the number of the nodes, edges, and neighbors of the input and depends only on the error tolerance and confidence probability while providing a theoretical guarantee for the approximation error. To the best of our knowledge, this is the first article to provide a theoretical guarantee of approximation for GNNs within constant time. Through experiments with synthetic and real-world datasets, we investigated the speed and precision of the node sampling scheme and validated our theoretical results.

Funder

JSPS KAKENHI

JST PRESTO program

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference38 articles.

1. Emergence of Scaling in Random Networks

2. A Neural Device for Searching Direct Correlations between Structures and Properties of Chemical Compounds

3. Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral networks and locally connected networks on graphs. In Proceedings of the 2nd International Conference on Learning Representations.

4. Approximating the Minimum Spanning Tree Weight in Sublinear Time

5. Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast learning with graph convolutional networks via importance sampling. In Proceedings of the 6th International Conference on Learning Representations.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parameter-Agnostic Deep Graph Clustering;ACM Transactions on Knowledge Discovery from Data;2024-01-12

2. Feature-Based Graph Backdoor Attack in the Node Classification Task;International Journal of Intelligent Systems;2023-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3