PROLISEAN

Author:

Hourany Edy1ORCID,Habib Bachir1,Fountaine Camille2,Makhoul Abdallah3,Piranda Benoit3,Bourgeois Julien3

Affiliation:

1. Holy Spirit University of Kaslik, Kaslik, Jounieh, Lebanon

2. École Spéciale Militaire de Saint-Cyr Coëtquidan, Guer, France

3. Université de Bourgogne Franche-Comté, FEMTO-ST Institute, CNRS

Abstract

The vision for programmable matter is to create a material that can be reprogrammed to have different shapes and to change its physical properties on demand. They are autonomous systems composed of a huge number of independent connected elements called particles. The connections to one another form the overall shape of the system. These particles are capable of interacting with each other and take decisions based on their environment. Beyond sensing, processing, and communication capabilities, programmable matter includes actuation and motion capabilities. It could be deployed in different domains and will constitute an intelligent component of the IoT. A lot of applications can derive from this technology, such as medical or industrial applications. However, just like any other technology, security is a huge concern. Given its distributed architecture and its processing limitations, programmable matter cannot handle the traditional security protocols and encryption algorithms. This article proposes a new security protocol optimized and dedicated for IoT programmable matter. This protocol is based on lightweight cryptography and uses the same encryption protocol as a hashing function while keeping the distributed architecture in mind. The analysis and simulation results show the efficiency of the proposed method and that a supercomputer will need about 5.93 × 10 25 years to decrypt the message.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The internet of modular robotic things: Issues, limitations, challenges, & solutions;Internet of Things;2023-10

2. Enhanced Precision Time Synchronization for Modular Robots;2021 IEEE 20th International Symposium on Network Computing and Applications (NCA);2021-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3