Report from the MMM 2020 Special Session on Multimedia Datasets for Repeatable Experimentation (MDRE 2020)

Author:

Duane Aaron1,Jónsson Björn 𐓄ór2,Gurrin Cathal2,Schöffmann Klaus3

Affiliation:

1. Dublin City University, Ireland

2. IT University of Copenhagen, Denmark

3. Institute of Information Technology (ITEC), Klagenfurt University

Abstract

Information retrieval and multimedia content access have a long history of comparative evaluation, and many of the advances in the area over the past decade can be attributed to the availability of open datasets that support comparative and repeatable experimentation. Hence, sharing data and code to allow other researchers to replicate research results is needed in the multimedia modeling field, as it helps to improve the performance of systems and the reproducibility of published papers. This report summarizes the special session on Multimedia Datasets for Repeatable Experimentation (MDRE 2020), which was organized at the 26th International Conference on MultiMedia Modeling (MMM 2020), held in January 2020 in Daejeon, South Korea. The intent of these special sessions is to be a venue for releasing datasets to the multimedia community and discussing dataset related issues. The presentation mode in 2020 was to have short presentations (approximately 8 minutes), followed by a panel discussion moderated by Aaron Duane. In the following we summarize the special session, including its talks, questions, and discussions.

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3