Jointly Leveraging Intent and Interaction Signals to Predict User Satisfaction with Slate Recommendations

Author:

Mehrotra Rishabh1,Lalmas Mounia1,Kenney Doug2,Lim-Meng Thomas2,Hashemian Golli2

Affiliation:

1. Spotify Research, United Kingdom

2. Spotify, USA

Publisher

ACM Press

Reference43 articles.

1. Biswarup Bhattacharya, Iftikhar Burhanuddin, Abhilasha Sancheti, and Kushal Satya. 2017. Intent-Aware Contextual Recommendation System. In Data Mining Workshops (ICDMW), 2017 IEEE International Conference on. IEEE, 1-8.

2. David M Blei and Peter I Frazier. 2011. Distance dependent Chinese restaurant processes. The Journal of Machine Learning Research 12 (2011), 2461-2488.

3. Olivier Chapelle, Shihao Ji, Ciya Liao, Emre Velipasaoglu, Larry Lai, and Su-Lin Wu. 2011. Intent-based diversification of web search results: metrics and algorithms. Information Retrieval 14, 6 (2011), 572-592.

4. Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. 2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research 16 (2002), 321-357.

5. Jean Garcia-Gathright, Brian St Thomas, Christine Hosey, Zahra Nazari, and Fernando Diaz. 2018. Understanding and Evaluating User Satisfaction with Music Discovery. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, 55-64.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Continual Learning Based on Task Masking for Multi-domain Recommendation;Communications in Computer and Information Science;2024

2. An Intent Taxonomy of Legal Case Retrieval;ACM Transactions on Information Systems;2023-12-11

3. Towards Companion Recommenders Assisting Users’ Long-Term Journeys;Proceedings of the 17th ACM Conference on Recommender Systems;2023-09-14

4. Scalable Deep Q-Learning for Session-Based Slate Recommendation;Proceedings of the 17th ACM Conference on Recommender Systems;2023-09-14

5. Intent-Satisfaction Modeling: From Music to Video Streaming;ACM Transactions on Recommender Systems;2023-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3