MMHFND: Fusing Modalities for Multimodal Multiclass Hindi Fake News Detection via Contrastive Learning

Author:

Sharma Richa1ORCID,Arya Arti11ORCID

Affiliation:

1. CSE, PES University, Bengaluru, India

Abstract

Multimodal content contains more deception than unimodal information, causing significant social and economic impacts. Current techniques often focus on single modality, neglecting knowledge fusion. While most studies have concentrated on English fake news detection, this study explores multi-modality for low-resource languages like Hindi. This work introduces the MMHFND model, based on M-CLIP, which uses late fusion for coarse (Fake vs Real) and fine-grained (World vs India vs Politics vs News vs Fact-Check) configurations. We extract deep representations from image and text using image transformer ResNet-50, a BERT-based L3cube-HindRoberta text transformer handling headlines, content, OCR text, and image captions, paired M-CLIP transformers, and an ELA (Error Level Analysis) image forensic method incorporating EfficientNet B0 to analyse multimodal news in Hindi language based on Devanagari script. M-CLIP integrates crossmodal similarity mapping of images and texts with retrieved multimodal features. The extracted features undergo redundancy reduction before being channelled into the final classifier. The MAM (Modality Attention Mechanism) is introduced, which generates weights for each modality individually. The MMHFND model uses a computed modality divergence score to identify dissonance between modalities and a modified contrastive loss on the score. We thoroughly analyse HinFakeNews dataset in a multimodal context, achieving accuracy in coarse and fine-grained configurations. We also undertake an ablation study to evaluate outcomes and explore alternative fusion processes on three different setups. The results show that the MMHFND model effectively detects fake news in Hindi with an accuracy of 0.986, outperforming other existing multimodal approaches.

Publisher

Association for Computing Machinery (ACM)

Reference49 articles.

1. MVAE: Multimodal Variational Autoencoder for Fake News Detection

2. Q. Peng, J. Cao, T. Yang, G. Junbo, and L. Jintao. 2019. Exploiting multidomain visual information for fake news detection.. In IEEE International Conference on Data Mining (ICDM). IEEE. 518–527. https://doi.ieeecomputersociety.org/10.1109/ICDM.2019.00062

3. A. Zubiaga A. Ahmet B. Kalina L. Maria and P. Rob. 2019. Detection and resolution of rumours in social media: A survey. ACM Computing Surveys (CSUR) 51 2 51 2 (March 2019) 1–36. https://doi.org/10.1145/3161603

4. Detecting rumors in social media: A survey

5. A Survey of Fake News

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3