APRICOD

Author:

Zhao Zhen Wei1,Ooi Wei Tsang1

Affiliation:

1. National University of Singapore, Singapore

Abstract

Content discovery is a major source of latency in peer-to-peer (P2P) media streaming systems, especially in the presence of noncontinuous user access, such as random seek in Video-on-Demand (VoD) streaming and teleportation in a Networked Virtual Environment (NVE). After the aforementioned user interactions, streaming systems often need to initiate the content discovery process to identify where to retrieve the requested media objects. Short content lookup latency is demanded to ensure smooth user experience. Existing content discovery systems based on either a Distributed Hash Table (DHT) or gossip mechanism cannot cope with noncontinuous access efficiently due to their long lookup latency. In this work, we propose an access-pattern-driven distributed caching middleware named APRICOD, which caters for fast and scalable content discovery in peer-to-peer media streaming systems, especially when user interactions are present. APRICOD exploits correlations among media objects accessed by users, and adapts to shift in the user access pattern automatically. We first present a general APRICOD design that can be used with any existing content discovery system. We then present an implementation of APRICOD on top of Pastry, which we use to evaluate APRICOD. Our evaluation in a 1024-node system, using a Second Life trace with 5,735 users and a VoD trace with 54 users, shows that APRICOD can effectively resolve all continuous access queries with a single hop deterministically with node failure as an exception, and resolve noncontinuous access queries with a single hop with high probability.

Funder

National Research Foundation-Prime Minister's office, Republic of Singapore

Media Development Authority - Singapore

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Personal Data Analytics to Facilitate Cyber Individual Modeling;2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech);2016-08

2. Discovery of Action Patterns and User Correlations in Task-Oriented Processes for Goal-Driven Learning Recommendation;IEEE Transactions on Learning Technologies;2014-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3