StreamScan

Author:

Yan Shengen1,Long Guoping1,Zhang Yunquan1

Affiliation:

1. Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract

Scan (also known as prefix sum) is a very useful primitive for various important parallel algorithms, such as sort, BFS, SpMV, compaction and so on. Current state of the art of GPU based scan implementation consists of three consecutive Reduce-Scan-Scan phases. This approach requires at least two global barriers and 3N (N is the problem size) global memory accesses. In this paper we propose StreamScan, a novel approach to implement scan on GPUs with only one computation phase. The main idea is to restrict synchronization to only adjacent workgroups, and thereby eliminating global barrier synchronization completely. The new approach requires only 2N global memory accesses and just one kernel invocation. On top of this we propose two important op-timizations to further boost performance speedups, namely thread grouping to eliminate unnecessary local barriers, and register optimization to expand the on chip problem size. We designed an auto-tuning framework to search the parameter space automatically to generate highly optimized codes for both AMD and Nvidia GPUs. We implemented our technique with OpenCL. Compared with previous fast scan implementations, experimental results not only show promising performance speedups, but also reveal dramatic different optimization tradeoffs between Nvidia and AMD GPU platforms.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Zero-Overhead Parallel Scans for Multi-Core CPUs;Proceedings of the 15th International Workshop on Programming Models and Applications for Multicores and Manycores;2024-03-03

2. X-TED: Massive Parallelization of Tree Edit Distance;Proceedings of the VLDB Endowment;2024-03

3. Performance Tuning for GPU-Embedded Systems: Machine-Learning-Based and Analytical Model-Driven Tuning Methodologies;2023 IEEE 35th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD);2023-10-17

4. Optimization Techniques for GPU Programming;ACM Computing Surveys;2023-03-16

5. Prefix sum (scan);Programming Massively Parallel Processors;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3