Protecting privacy using the decentralized label model

Author:

Myers Andrew C.1,Liskov Barbara2

Affiliation:

1. Cornell Univ., Ithaca, NY

2. Massachusetts Institute of Technology, Cambridge

Abstract

Stronger protection is needed for the confidentiality and integrity of data, because programs containing untrusted code are the rule rather than the exception. Information flow control allows the enforcement of end-to-end security policies, but has been difficult to put into practice. This article describes the decentralized label model, a new label model for control of information flow in systems with mutual distrust and decentralized authority. The model improves on existing multilevel security models by allowing users to declassify information in a decentralized way, and by improving support for fine-grained data sharing. It supports static program analysis of information flow, so that programs can be certified to permit only acceptable information flows, while largely avoiding the overhead of run-time checking. The article introduces the language Jif, an extension to Java that provides static checking of information flow using the decentralized label model.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 287 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Declassification Policy for Program Complexity Analysis;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

2. Student Research Abstract: Least Privilege Persistent-Storage Access in Web Browsers;Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing;2024-04-08

3. Towards a GDPR-compliant cloud architecture with data privacy controlled through sticky policies;PeerJ Computer Science;2024-03-29

4. Integrating Data Privacy Compliance in Active Object Languages;Lecture Notes in Computer Science;2024

5. A Data Protection Design for Online Exam Proctoring in Compliance with the Indonesian Personal Data Protection Law;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3