Twitter analytics

Author:

Goonetilleke Oshini1,Sellis Timos1,Zhang Xiuzhen1,Sathe Saket2

Affiliation:

1. RMIT University, Melbourne, Australia

2. IBM Melbourne Research Laboratory, Australia

Abstract

With the inception of the Twitter microblogging platform in 2006, a myriad of research efforts have emerged studying different aspects of the Twittersphere. Each study exploits its own tools and mechanisms to capture, store, query and analyze Twitter data. Inevitably, platforms have been developed to replace this ad-hoc exploration with a more structured and methodological form of analysis. Another body of literature focuses on developing languages for querying Tweets. This paper addresses issues around the big data nature of Twitter and emphasizes the need for new data management and query language frameworks that address limitations of existing systems. We review existing approaches that were developed to facilitate twitter analytics followed by a discussion on research issues and technical challenges in developing integrated solutions.

Publisher

Association for Computing Machinery (ACM)

Reference76 articles.

1. FaceBook Query Language(FQL) overview. https://developers.facebook.com/docs/technical-guides/fql. FaceBook Query Language(FQL) overview. https://developers.facebook.com/docs/technical-guides/fql.

2. Neo4j: The world's leading graph database. http://www.neo4j.org/. Neo4j: The world's leading graph database. http://www.neo4j.org/.

3. Sparksee: Scalable high-performance graph database. http://www.sparsity-technologies.com/. Sparksee: Scalable high-performance graph database. http://www.sparsity-technologies.com/.

4. Titan: distributed graph database. http://thinkaurelius.github.io/titan. Titan: distributed graph database. http://thinkaurelius.github.io/titan.

5. TrendsMap Realtime local twitter trends. http://trendsmap.com/. TrendsMap Realtime local twitter trends. http://trendsmap.com/.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Socializing IR: Turkish IR Scholars and their Twitter Interactions;All Azimuth: A Journal of Foreign Policy and Peace;2024-01-24

2. A Data Quality Multidimensional Model for Social Media Analysis;Business & Information Systems Engineering;2023-11-10

3. Twitter as a predictive system: A systematic literature review;Journal of Business Research;2023-03

4. Fabricate the Auto-aquaculture Structure with Android Monitoring System;International Journal of Advanced Network, Monitoring and Controls;2023-01-01

5. To Be or Not To Be: Twitter Presence among Turkish Diplomats;MGIMO Review of International Relations;2022-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3