Mosaic: An Interoperable Compiler for Tensor Algebra

Author:

Bansal Manya1ORCID,Hsu Olivia1ORCID,Olukotun Kunle1ORCID,Kjolstad Fredrik1ORCID

Affiliation:

1. Stanford University, USA

Abstract

We introduce Mosaic, a sparse tensor algebra compiler that can bind tensor expressions to external functions of other tensor algebra libraries and compilers. Users can extend Mosaic by adding new functions and bind a sub-expression to a function using a scheduling API. Mosaic substitutes the bound sub-expressions with calls to the external functions and automatically generates the remaining code using a default code generator. As the generated code is fused by default, users can productively leverage both fusion and calls to specialized functions within the same compiler. We demonstrate the benefits of our dual approach by showing that calling hand-written CPU and specialized hardware functions can provide speedups of up to 206× against fused code in some cases, while generating fused code can provide speedups of up to 3.57× against code that calls external functions in other cases. Mosaic also offers a search system that can automatically map an expression to a set of registered external functions. Both the explicit binding and automatic search are verified by Mosaic. Additionally, the interface for adding new external functions is simple and general. Currently, 38 external functions have been added to Mosaic, with each addition averaging 20 lines of code.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimum Cost Loop Nests for Contraction of a Sparse Tensor with a Tensor Network;Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures;2024-06-17

2. Legate Sparse: Distributed Sparse Computing in Python;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2023-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3