Lagrangian-based Online Stochastic Bin Packing

Author:

Gupta Varun1,Radovanovic Ana2

Affiliation:

1. University of Chicago, Chicago, IL, USA

2. Google Research, Mountain View, CA, USA

Abstract

Motivated by the problem of packing Virtual Machines on physical servers in the cloud, we study the problem of online stochastic bin packing under two settings -- packing with permanent items, and packing under item departures. In the setting with permanent items, we present the first truly distribution-oblivious bin packing heuristic that achieves O(√ n ) regret compared to OPT for all distributions. Our algorithm is essentially gradient descent on suitably defined Lagrangian relaxation of the bin packing Linear Program. We also prove guarantees of our heuristic against non i.i.d. input using a randomly delayed Lyapunov function to smoothen the input. For the setting where items eventually depart, we are interested in minimizing the steady-state number of bins. Our algorithm extends as is to the case of item departures. Further, leveraging the Lagrangian approach, we generalize our algorithm to a setting where the processing time of an item is inflated by a certain known factor depending on the configuration it is packed in.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3