A study of the scalability of stop-the-world garbage collectors on multicores

Author:

Gidra Lokesh1,Thomas Gaël1,Sopena Julien1,Shapiro Marc1

Affiliation:

1. LIP6-INRIA/UPMC, Paris, France

Abstract

Large-scale multicore architectures create new challenges for garbage collectors (GCs). In particular, throughput-oriented stop-the-world algorithms demonstrate good performance with a small number of cores, but have been shown to degrade badly beyond approximately 8 cores on a 48-core with OpenJDK 7. This negative result raises the question whether the stop-the-world design has intrinsic limitations that would require a radically different approach. Our study suggests that the answer is no, and that there is no compelling scalability reason to discard the existing highly-optimised throughput-oriented GC code on contemporary hardware. This paper studies the default throughput-oriented garbage collector of OpenJDK 7, called Parallel Scavenge. We identify its bottlenecks, and show how to eliminate them using well-established parallel programming techniques. On the SPECjbb2005, SPECjvm2008 and DaCapo 9.12 benchmarks, the improved GC matches the performance of Parallel Scavenge at low core count, but scales well, up to 48~cores.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microservice Extraction Based on a Comprehensive Evaluation of Logical Independence and Performance;IEEE Transactions on Software Engineering;2024-05

2. Concurrent GCs and Modern Java Workloads: A Cache Perspective;Proceedings of the 2023 ACM SIGPLAN International Symposium on Memory Management;2023-06-06

3. Scaling Up Performance of Managed Applications on NUMA Systems;Proceedings of the 2023 ACM SIGPLAN International Symposium on Memory Management;2023-06-06

4. DJXPerf: Identifying Memory Inefficiencies via Object-Centric Profiling for Java;Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization;2023-02-17

5. Assessing Contemporary Automated Memory Management in Java – Garbage First, Shenandoah, and Z Garbage Collectors Comparison;2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO);2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3