First Steps Towards a Runtime Analysis When Starting With a Good Solution

Author:

Antipov Denis1ORCID,Buzdalov Maxim2ORCID,Doerr Benjamin3ORCID

Affiliation:

1. The University of Adelaide, Australia

2. Aberystwyth University, United Kingdom

3. Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut Polytechnique de Paris, France

Abstract

The mathematical runtime analysis of evolutionary algorithms traditionally regards the time an algorithm needs to find a solution of a certain quality when initialized with a random population. In practical applications it may be possible to guess solutions that are better than random ones. We start a mathematical runtime analysis for such situations. We observe that different algorithms profit to a very different degree from a better initialization. We also show that the optimal parameterization of an algorithm can depend strongly on the quality of the initial solutions. To overcome this difficulty, self-adjusting and randomized heavy-tailed parameter choices can be profitable. Finally, we observe a larger gap between the performance of the best evolutionary algorithm we found and the corresponding black-box complexity. This could suggest that evolutionary algorithms better exploiting good initial solutions are still to be found. These first findings stem from analyzing the performance of the \((1+1)\) evolutionary algorithm and the static, self-adjusting, and heavy-tailed \((1+(\lambda,\lambda))\) genetic algorithms on the OneMax benchmark. We are optimistic that the question of how to profit from good initial solutions is interesting beyond these first examples.

Publisher

Association for Computing Machinery (ACM)

Reference55 articles.

1. Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. 2020. First steps towards a runtime analysis when starting with a good solution. In Parallel Problem Solving From Nature, PPSN 2020, Part II. Springer, 560–573.

2. Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. 2021. Lazy parameter tuning and control: choosing all parameters randomly from a power-law distribution. In Genetic and Evolutionary Computation Conference, GECCO 2021. ACM, 1115–1123.

3. Fast mutation in crossover-based algorithms;Antipov Denis;Algorithmica,2022

4. Denis Antipov Maxim Buzdalov and Benjamin Doerr. 2024a. Code and data for “First steps towards a runtime analysis when starting with a good solution”. https://doi.org/10.5281/zenodo.11622895

5. Lazy parameter tuning and control: choosing all parameters randomly from a power-law distribution;Antipov Denis;Algorithmica,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3