Sound and robust solid modeling via exact real arithmetic and continuity

Author:

Sherman Benjamin1,Michel Jesse1,Carbin Michael1

Affiliation:

1. Massachusetts Institute of Technology, USA

Abstract

Algorithms for solid modeling, i.e., Computer-Aided Design (CAD) and computer graphics, are often specified on real numbers and then implemented with finite-precision arithmetic, such as floating-point. The result is that these implementations do not soundly compute the results that are expected from their specifications. We present a new library, StoneWorks, that provides sound and robust solid modeling primitives. We implement StoneWorks in MarshallB, a pure functional programming language for exact real arithmetic in which types denote topological spaces and functions denote continuous maps, ensuring that all programs are sound and robust. We developed MarshallB as an extension of the Marshall language. We also define a new shape representation, compact representation ( K-rep ), that enables constructions such as Minkowski sum and analyses such as Hausdorff distance that are not possible with traditional representations. K-rep is a nondeterminism monad for describing all the points in a shape. With our library, language, and representation together, we show that short StoneWorks programs can specify and execute sound and robust solid modeling algorithms and tasks.

Funder

Office of Naval Research

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ₛ: computable semantics for differentiable programming with higher-order functions and datatypes;Proceedings of the ACM on Programming Languages;2021-01-04

2. Towards an API for the real numbers;Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation;2020-06-06

3. Synthesizing structured CAD models with equality saturation and inverse transformations;Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation;2020-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3