Fast, Efficient Floating-Point Adders and Multipliers for FPGAs

Author:

Hemmert K. Scott1,Underwood Keith D.2

Affiliation:

1. Sandia National Laboratories

2. Intel Corporation

Abstract

Floating-point applications are a growing trend in the FPGA community. As such, it has become critical to create floating-point units optimized for standard FPGA technology. Unfortunately, the FPGA design space is very different from the VLSI design space; thus, optimizations for FPGAs can differ significantly from optimizations for VLSI. In particular, the FPGA environment constrains the design space such that only limited parallelism can be effectively exploited to reduce latency. Obtaining the right balances between clock speed, latency, and area in FPGAs can be particularly challenging. This article presents implementation details for an IEEE-754 standard floating-point adder and multiplier for FPGAs. The designs presented here enable a Xilinx Virtex4 FPGA (-11 speed grade) to achieve 270 MHz IEEE compliant double precision floating-point performance with a 9-stage adder pipeline and 14-stage multiplier pipeline. The area requirement is approximately 500 slices for the adder and under 750 slices for the multiplier.

Funder

U.S. Department of Energy

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing an IEEE-Compliant FPU that Supports Configurable Precision for Soft Processors;ACM Transactions on Reconfigurable Technology and Systems;2024-04-30

2. Area-latency efficient floating point adder using interleaved alignment and normalization;Microprocessors and Microsystems;2023-06

3. Improvised hierarchy of floating point multiplication using 5:3 compressor;International Journal of Electronics Letters;2021-01-19

4. Alleviation of Data Timing Channels in Normalized/Subnormal Floating Point Multiplier;Journal of Circuits, Systems and Computers;2020-07-02

5. Implementing Sticky Bit Generators Based on FPGA Carry-Chains for Floating-Point Adders;Advances in Intelligent Systems and Computing;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3