Anonymization of Daily Activity Data by Using ℓ-diversity Privacy Model

Author:

Parameshwarappa Pooja1,Chen Zhiyuan1,Koru Güneş1

Affiliation:

1. University of Maryland, Baltimore County, USA

Abstract

In the age of IoT, collection of activity data has become ubiquitous. Publishing activity data can be quite useful for various purposes such as estimating the level of assistance required by older adults and facilitating early diagnosis and treatment of certain diseases. However, publishing activity data comes with privacy risks: Each dimension, i.e., the activity of a person at any given point in time can be used to identify a person as well as to reveal sensitive information about the person such as not being at home at that time. Unfortunately, conventional anonymization methods have shortcomings when it comes to anonymizing activity data. Activity datasets considered for publication are often flat with many dimensions but typically not many rows, which makes the existing anonymization techniques either inapplicable due to very few rows, or else either inefficient or ineffective in preserving utility. This article proposes novel multi-level clustering-based approaches using a non-metric weighted distance measure that enforce ℓ-diversity model. Experimental results show that the proposed methods preserve data utility and are orders more efficient than the existing methods.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3