Winols: A Large-Tiling Sparse Winograd CNN Accelerator on FPGAs

Author:

Xie Kunpeng1,Lu Ye1,He Xinyu1,Yi Dezhi1,Dong Huijuan1,Chen Yao2

Affiliation:

1. Nankai University, Tianjin Key Laboratory of Network and Data Security Technology, and the Key Laboratory of Data and Intelligent System Security, Ministry of Education, Tianjin, China

2. National University of Singapore, Singapore

Abstract

Convolutional Neural Networks (CNNs) can benefit from the computational reductions provided by the Winograd minimal filtering algorithm and weight pruning. However, harnessing the potential of both methods simultaneously introduces complexity in designing pruning algorithms and accelerators. Prior studies aimed to establish regular sparsity patterns in the Winograd domain, but they were primarily suited for small tiles, with domain transformation dictating the sparsity ratio. The irregularities in data access and domain transformation pose challenges in accelerator design, especially for larger Winograd tiles. This paper introduces ”Winols,” an innovative algorithm-hardware co-design strategy that emphasizes the strengths of the large-tiling Winograd algorithm. Through a spatial-to-Winograd relevance degree evaluation, we extensively explore domain transformation and propose a cross-domain pruning technique that retains sparsity across both spatial and Winograd domains. To compress pruned weight matrices, we invent a relative column encoding scheme. We further design an FPGA-based accelerator for CNN models with large Winograd tiles and sparse matrix-vector operations. Evaluations indicate our pruning method achieves up to 80% weight tile sparsity in the Winograd domain without compromising accuracy. Our Winols accelerator outperforms dense accelerator by a factor of 31.7 × in inference latency. When compared with prevailing sparse Winograd accelerators, Winols reduces latency by an average of 10.9 ×, and improves DSP and energy efficiencies by over 5.6 × and 5.7 ×, respectively. When compared with the CPU and GPU platform, Winols accelerator with tile size 8 × 8 achieves 24.6 × and 2.84 × energy efficiency improvements, respectively.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3