Privacy-aware Tag Recommendation for Accurate Image Privacy Prediction

Author:

Tonge Ashwini1ORCID,Caragea Cornelia2

Affiliation:

1. Kansas State University, KS, USA

2. University of Illinois at Chicago, IL, USA

Abstract

Online images’ tags are very important for indexing, sharing, and searching of images, as well as surfacing images with private or sensitive content, which needs to be protected. Social media sites such as Flickr generate these metadata from user-contributed tags. However, as the tags are at the sole discretion of users, these tags tend to be noisy and incomplete. In this article, we present a privacy-aware approach to automatic image tagging, which aims at improving the quality of user annotations, while also preserving the images’ original privacy sharing patterns. Precisely, we recommend potential tags for each target image by mining privacy-aware tags from the most similar images of the target image, which are obtained from a large collection. Experimental results show that, although the user-input tags compose noise, our privacy-aware approach is able to predict accurate tags that can improve the performance of a downstream application on image privacy prediction and outperforms an existing privacy-oblivious approach to image tagging. The results also show that, even for images that do not have any user tags, our proposed approach can recommend accurate tags. Crowd-sourcing the predicted tags exhibits the quality of our privacy-aware recommended tags. Our code, features, and the dataset used in experiments are available at: https://github.com/ashwinitonge/privacy-aware-tag-rec.git.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3