RF-TESI: Radio Frequency Fingerprint-based Smartphone Identification under Temperature Variation

Author:

Gu Xiaolin1ORCID,Wu Wenjia2ORCID,Song Aibo2ORCID,Yang Ming2ORCID,Ling Zhen2ORCID,Luo Junzhou2ORCID

Affiliation:

1. School of Cyber Science and Engineering, Southeast University, China

2. School of Computer Science and Engineering, Southeast University, China

Abstract

Radio frequency fingerprint identification (RFFI) is a promising technique for smartphone identification. However, we find that the temperature of the RF front end in smartphones can significantly impact the RF features, including the carrier frequency offset (CFO) and statistical RF features. The unstable RF features caused by temperature changes can negatively affect the performance of state-of-the-art RFFI approaches. To this end, we propose the RF-TESI solution for smartphone identification under temperature variation. First, we construct a dataset by extracting temperature and RF features. In the dataset, the extracted temperature values constitute a set of temperature values and each registered temperature value corresponds to a group of RF features. Next, we evaluate the distinctiveness of RF features across smartphones to select the most suitable RF fingerprint. Then, we train multiple random forest models, each tagged with a registered temperature. In addition, because there are still many temperatures out of the temperature set, we design an RF fingerprint estimation method to estimate RF fingerprints at unregistered temperatures. Finally, the experiments show RF-TESI demonstrates satisfactory performance under different scenarios, taking into account variations in temperature, time and position. Besides, our proposed approach is better than all state-of-the-art approaches in smartphone identification.

Funder

National Natural Science Foundation of China

Key R&D Program of Jiangsu Province

Jiangsu Provincial Key Laboratory of Network and Information Security

Key Laboratory of Computer Network and Information Integration of the Ministry of Education of China

Fundamental Research Funds for the Central Universities

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3