The structure and performance of interpreters

Author:

Romer Theodore H.1,Lee Dennis1,Voelker Geoffrey M.1,Wolman Alec1,Wong Wayne A.1,Baer Jean-Loup1,Bershad Brian N.1,Levy Henry M.1

Affiliation:

1. Department of Computer Science and Engineering, University of Washington, Seattle, WA

Abstract

Interpreted languages have become increasingly popular due to demands for rapid program development, ease of use, portability, and safety. Beyond the general impression that they are "slow," however, little has been documented about the performance of interpreters as a class of applications.This paper examines interpreter performance by measuring and analyzing interpreters from both software and hardware perspectives. As examples, we measure the MIPSI, Java, Perl, and Tcl interpreters running an array of micro and macro benchmarks on a DEC Alpha platform. Our measurements of these interpreters relate performance to the complexity of the interpreter's virtual machine and demonstrate that native runtime libraries can play a key role in providing good performance. From an architectural perspective, we show that interpreter performance is primarily a function of the interpreter itself and is relativelyindependentof the application being interpreted. We also demonstrate that high-level interpreters' demands on processor resources are comparable to those of other complex compiled programs, such as gcc. We conclude that interpreters, as a class of applications, do not currently motivate special hardware support for increased performance.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of an Artificial Neural Network for Efficient Computation of Chemical Activities within an EAF Process Model;Metals;2024-06-20

2. Accidental Choices—How JVM Choice and Associated Build Tools Affect Interpreter Performance;Computers;2022-06-14

3. An Empirical Study on Bugs in Python Interpreters;IEEE Transactions on Reliability;2022-06

4. Quantifying the interpretation overhead of Python;Science of Computer Programming;2022-03

5. An efficient interpreter for Datalog by de-specializing relations;Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2021-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3