Extraction and classification of dense implicit communities in the Web graph

Author:

Dourisboure Yon1,Geraci Filippo2,Pellegrini Marco2

Affiliation:

1. LIUPPA - Université de Pau et des Pays de l'Adour, Pau Cedex, France

2. Istituto di Informatica e Telematica—CNR, Pisa, Italy

Abstract

The World Wide Web (WWW) is rapidly becoming important for society as a medium for sharing data, information, and services, and there is a growing interest in tools for understanding collective behavior and emerging phenomena in the WWW. In this article we focus on the problem of searching and classifying communities in the Web. Loosely speaking a community is a group of pages related to a common interest. More formally, communities have been associated in the computer science literature with the existence of a locally dense subgraph of the Web graph (where Web pages are nodes and hyperlinks are arcs of the Web graph). The core of our contribution is a new scalable algorithm for finding relatively dense subgraphs in massive graphs. We apply our algorithm on Web graphs built on three publicly available large crawls of the Web (with raw sizes up to 120M nodes and 1G arcs). The effectiveness of our algorithm in finding dense subgraphs is demonstrated experimentally by embedding artificial communities in the Web graph and counting how many of these are blindly found. Effectiveness increases with the size and density of the communities: it is close to 100% for communities of thirty nodes or more (even at low density). It is still about 80% even for communities of twenty nodes with density over 50% of the arcs present. At the lower extremes the algorithm catches 35% of dense communities made of ten nodes. We also develop some sufficient conditions for the detection of a community under some local graph models and not-too-restrictive hypotheses. We complete our Community Watch system by clustering the communities found in the Web graph into homogeneous groups by topic and labeling each group by representative keywords.

Funder

Fifth Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BDAC: Boundary-Driven Approximations of K-Cliques;Symmetry;2024-08-02

2. A Survey on the Densest Subgraph Problem and its Variants;ACM Computing Surveys;2024-04-30

3. Parallel k-Core Decomposition with Batched Updates and Asynchronous Reads;Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming;2024-02-20

4. Modified Coot bird optimization algorithm for solving community detection problem in social networks;Neural Computing and Applications;2024-02-07

5. Community detection: Concepts, algorithms, evaluation and challenges;International Journal of Wavelets, Multiresolution and Information Processing;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3