Durable functions: semantics for stateful serverless

Author:

Burckhardt Sebastian1,Gillum Chris2,Justo David2,Kallas Konstantinos3,McMahon Connor2,Meiklejohn Christopher S.4

Affiliation:

1. Microsoft Research, USA

2. Microsoft Azure, USA

3. University of Pennsylvania, USA

4. Carnegie Mellon University, USA

Abstract

Serverless, or Functions-as-a-Service (FaaS), is an increasingly popular paradigm for application development, as it provides implicit elastic scaling and load based billing. However, the weak execution guarantees and intrinsic compute-storage separation of FaaS create serious challenges when developing applications that require persistent state, reliable progress, or synchronization. This has motivated a new generation of serverless frameworks that provide stateful abstractions. For instance, Azure's Durable Functions (DF) programming model enhances FaaS with actors, workflows, and critical sections. As a programming model, DF is interesting because it combines task and actor parallelism, which makes it suitable for a wide range of serverless applications. We describe DF both informally, using examples, and formally, using an idealized high-level model based on the untyped lambda calculus. Next, we demystify how the DF runtime can (1) execute in a distributed unreliable serverless environment with compute-storage separation, yet still conform to the fault-free high-level model, and (2) persist execution progress without requiring checkpointing support by the language runtime. To this end we define two progressively more complex execution models, which contain the compute-storage separation and the record-replay, and prove that they are equivalent to the high-level model.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference39 articles.

1. 2020. AWS Step Functions. https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html 2020. AWS Step Functions. https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html

2. The development of Erlang

3. The serverless trilemma: function composition for serverless computing

4. Jonas Bonér. 2020. Towards Stateful Serverless. https://www.youtube.com/watch?v=DVTf5WQlgB8 Jonas Bonér. 2020. Towards Stateful Serverless. https://www.youtube.com/watch?v=DVTf5WQlgB8

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3