Investigating and Modeling the Web Elements’ Visual Feature Influence on Free-viewing Attention

Author:

Vidyapu Sandeep1ORCID,Vedula Vijaya Saradhi1,Bhattacharya Samit1

Affiliation:

1. IIT Guwahati, Guwahati, Assam, India

Abstract

User attentional analyses on web elements help in synthesis and rendering of webpages. However, majority of the existing analyses are limited in incorporating the intrinsic visual features of text and images. This study aimed to analyze the influence of elements’ visual features (font-size, font-family, color, etc., for text; and brightness, color, intensity, etc., for images) besides their position on users’ free-viewing visual attention. The investigation includes: (i) user’s position-based attention allocation on text and image web elements, (ii) identification of informative visual features with respect to the attention, (iii) performance of informative visual features in predicting the ordinal visual attention (fixation-indices). Towards the study, an eye-tracking experiment was conducted with 42 participants on 36 real-world webpages. The analyses revealed: (i) Though users predominantly allocate the initial attention to MiddleCenter}, MiddleLeft, TopCenter, TopLeft regions, the elements in Right and Bottom regions are not completely ignored; (ii) Space -related (column-gap, line-height, padding) and font Size -related (font-size, font-weight) intrinsic text features, and Mid-level Color Histogram intrinsic image features are informative, while position and size are informative for both the types; (iii) the informative visual features predict the ordinal visual attention on an element with 90% average accuracy and 70% micro-F1 score. Our approach finds applications in element-granular web-designing and user attention prediction.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SINBAD: Saliency-informed detection of breakage caused by ad blocking;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

2. Predicting Trending Elements on Web Pages Using Machine Learning;International Journal of Human–Computer Interaction;2023-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3