From Real to Complex

Author:

Wei Bo1ORCID,Hu Wen2,Yang Mingrui3,Chou Chun Tung2

Affiliation:

1. Northumbria University, Tyne and Wear, UK

2. University of New South Wales, Sydney, Australia

3. Cleveland Clinic, Cleveland, Ohio, USA

Abstract

Activity recognition is an important component of many pervasive computing applications. Radio-based activity recognition has the advantage that it does not have the privacy concern compared with camera-based solutions, and subjects do not have to carry a device on them. It has been shown channel state information (CSI) can be used for activity recognition in a device-free setting. With the proliferation of wireless devices, it is important to understand how radio frequency interference (RFI) can impact on pervasive computing applications. In this article, we investigate the impact of RFI on device-free CSI-based location-oriented activity recognition. We present data to show that RFI can have a significant impact on the CSI vectors. In the absence of RFI, different activities give rise to different CSI vectors that can be differentiated visually. However, in the presence of RFI, the CSI vectors become much noisier, and activity recognition also becomes harder. Our extensive experiments show that the performance may degrade significantly with RFI. We then propose a number of countermeasures to mitigate the impact of RFI and improve the performance. We are also the first to use complex-valued CSI along with the state-of-the-art Sparse Representation Classification method to enhance the performance in the environment with RFI.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference63 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recognizing Daily Human Activities Using Nonintrusive Sensing and Analytics for Supporting Human-Centered Built Environments;Construction Research Congress 2024;2024-03-18

2. Speech Emotion Recognition Using Machine Learning and Deep Learning;2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU);2024-03-01

3. WiLDAR: WiFi Signal-Based Lightweight Deep Learning Model for Human Activity Recognition;IEEE Internet of Things Journal;2024-01-15

4. Phantom-CSI Attacks against Wireless Liveness Detection;Proceedings of the 26th International Symposium on Research in Attacks, Intrusions and Defenses;2023-10-16

5. Contactless Human Activity Recognition using Deep Learning with Flexible and Scalable Software Define Radio;2023 International Wireless Communications and Mobile Computing (IWCMC);2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3