Inferring Dynamic Diffusion Networks in Online Media

Author:

Tahani Maryam1,Hemmatyar Ali M. A.1,Rabiee Hamid R.1,Ramezani Maryam1

Affiliation:

1. Sharif University of Technology, Tehran, Iran

Abstract

Online media play an important role in information societies by providing a convenient infrastructure for different processes. Information diffusion that is a fundamental process taking place on social and information networks has been investigated in many studies. Research on information diffusion in these networks faces two main challenges: (1) In most cases, diffusion takes place on an underlying network, which is latent and its structure is unknown. (2) This latent network is not fixed and changes over time. In this article, we investigate the diffusion network extraction (DNE) problem when the underlying network is dynamic and latent. We model the diffusion behavior (existence probability) of each edge as a stochastic process and utilize the Hidden Markov Model (HMM) to discover the most probable diffusion links according to the current observation of the diffusion process, which is the infection time of nodes and the past diffusion behavior of links. We evaluate the performance of our Dynamic Diffusion Network Extraction (DDNE) method, on both synthetic and real datasets. Experimental results show that the performance of the proposed method is independent of the cascade transmission model and outperforms the state of art method in terms of F-measure.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Joint Inference of Diffusion and Structure in Partially Observed Social Networks Using Coupled Matrix Factorization;ACM Transactions on Knowledge Discovery from Data;2023-07-18

2. Topology tracking of dynamic UAV wireless networks;Chinese Journal of Aeronautics;2021-09

3. Recommender System-Based Diffusion Inferring for Open Social Networks;IEEE Transactions on Computational Social Systems;2020-02

4. Influence Analysis in Evolving Networks: A Survey;IEEE Transactions on Knowledge and Data Engineering;2020

5. Continuous-Time User Modeling in Presence of Badges;ACM Transactions on Knowledge Discovery from Data;2018-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3