Learning with Euler Collaborative Representation for Robust Pattern Analysis

Author:

Zhou Jianhang1ORCID,Wang Guancheng1ORCID,Zeng Shaoning2ORCID,Zhang Bob3ORCID

Affiliation:

1. University of Macau, China

2. University of Electronic Science and Technology of China, China

3. Centre for Artificial Intelligence and Robotics, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China

Abstract

The Collaborative Representation (CR) framework has provided various effective and efficient solutions to pattern analysis. By leveraging between discriminative coefficient coding (l 2 regularization) and the best reconstruction quality (collaboration), the CR framework can exploit discriminative patterns efficiently in high-dimensional space. Due to the limitations of its linear representation mechanism, the CR must sacrifice its superior efficiency for capturing the non-linear information with the kernel trick. Besides this, even if the coding is indispensable, there is no mechanism designed to keep the CR free from inevitable noise brought by real-world information systems. In addition, the CR only emphasizes exploiting discriminative patterns on coefficients rather than on the reconstruction. To tackle the problems of primitive CR with a unified framework, in this article we propose the Euler Collaborative Representation (E-CR) framework. Inferred from the Euler formula, in the proposed method, we map the samples to a complex space to capture discriminative and non-linear information without the high-dimensional hidden kernel space. Based on the proposed E-CR framework, we form two specific classifiers: the Euler Collaborative Representation based Classifier (E-CRC) and the Euler Probabilistic Collaborative Representation based Classifier (E-PROCRC). Furthermore, we specifically designed a robust algorithm for E-CR (termed as R-E-CR ) to deal with the inevitable noises in real-world systems. Robust iterative algorithms have been specially designed for solving E-CRC and E-PROCRC. We correspondingly present a series of theoretical proofs to ensure the completeness of the theory for the proposed robust algorithms. We evaluated E-CR and R-E-CR with various experiments to show its competitive performance and efficiency.

Funder

National Natural Science Foundation of China

Open Research Fund of the Beijing Key Laboratory of Big Data Technology for Food Safety

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3