Bias Issues and Solutions in Recommender System

Author:

Chen Jiawei1,Wang Xiang2,Feng Fuli2,He Xiangnan1

Affiliation:

1. University of Science and Technology of China, China

2. National University of Singapore, Singapore

Funder

USTC Research Funds of the Double First-Class Initiative

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

ACM

Reference35 articles.

1. Himan Abdollahpouri and Masoud Mansoury. 2020. Multi-sided exposure bias in recommendation. arXiv preprint arXiv:2006.15772(2020). Himan Abdollahpouri and Masoud Mansoury. 2020. Multi-sided exposure bias in recommendation. arXiv preprint arXiv:2006.15772(2020).

2. Hands on Data and Algorithmic Bias in Recommender Systems

3. Rocío Cañamares and Pablo Castells. 2018. Should i follow the crowd?: A probabilistic analysis of the effectiveness of popularity in recommender systems. In SIGIR. ACM 415–424. Rocío Cañamares and Pablo Castells. 2018. Should i follow the crowd?: A probabilistic analysis of the effectiveness of popularity in recommender systems. In SIGIR. ACM 415–424.

4. Jiawei Chen Hande Dong Yang Qiu Xiangnan He Xin Xin Liang Chen Guli Lin and Keping Yang. [n.d.]. AutoDebias: Learning to Debias for Recommendation. Jiawei Chen Hande Dong Yang Qiu Xiangnan He Xin Xin Liang Chen Guli Lin and Keping Yang. [n.d.]. AutoDebias: Learning to Debias for Recommendation.

5. Jiawei Chen Hande Dong Xiang Wang Fuli Feng Meng Wang and Xiangnan He. 2020. Bias and Debias in Recommender System: A Survey and Future Directions. arXiv preprint arXiv:2010.03240(2020). Jiawei Chen Hande Dong Xiang Wang Fuli Feng Meng Wang and Xiangnan He. 2020. Bias and Debias in Recommender System: A Survey and Future Directions. arXiv preprint arXiv:2010.03240(2020).

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Language Models for Recommendation: Past, Present, and Future;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. CaDRec: Contextualized and Debiased Recommender Model;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

3. Counterfactual Data Augmentation for Debiased Coupon Recommendations Based on Potential Knowledge;Companion Proceedings of the ACM Web Conference 2024;2024-05-13

4. Large Language Models for Recommendation: Progresses and Future Directions;Companion Proceedings of the ACM Web Conference 2024;2024-05-13

5. Debiasing Recommendation with Personal Popularity;Proceedings of the ACM Web Conference 2024;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3