Active Exploration for Neural Global Illumination of Variable Scenes

Author:

Diolatzis Stavros1,Philip Julien1,Drettakis George1ORCID

Affiliation:

1. Inria & Université Côte d’Azur, GraphDeco, Sophia Antipolis, France

Abstract

Neural rendering algorithms introduce a fundamentally new approach for photorealistic rendering, typically by learning a neural representation of illumination on large numbers of ground truth images. When training for a given variable scene, such as changing objects, materials, lights, and viewpoint, the space \( \mathcal {D} \)  of possible training data instances quickly becomes unmanageable as the dimensions of variable parameters increase. We introduce a novel Active Exploration method using Markov Chain Monte Carlo, which explores \( \mathcal {D} \) , generating samples (i.e., ground truth renderings) that best help training and interleaves training and on-the-fly sample data generation. We introduce a self-tuning sample reuse strategy to minimize the expensive step of rendering training samples. We apply our approach on a neural generator that learns to render novel scene instances given an explicit parameterization of the scene configuration. Our results show that Active Exploration trains our network much more efficiently than uniformly sampling and, together with our resolution enhancement approach, achieves better quality than uniform sampling at convergence. Our method allows interactive rendering of hard light transport paths (e.g., complex caustics), which require very high samples counts to be captured, and provides dynamic scene navigation and manipulation, after training for 5 to 18 hours depending on required quality and variations.

Funder

Beijing Municipal Natural Science Foundation for Distinguished Young Scholars

National Natural Science Foundation of China

Royal Society Newton Advanced Fellowship

Samsung GRO program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference65 articles.

1. Hendrik Baatz, Jonathan Granskog, Marios Papas, Fabrice Rousselle, and Jan Novák. 2021. NeRF-Tex: Neural reflectance field textures. In Proceedings of the Eurographics Symposium on Rendering (DL-only Track).

2. Offline Deep Importance Sampling for Monte Carlo Path Tracing

3. Kernel-predicting convolutional networks for denoising Monte Carlo renderings

4. X-Fields

5. Nir Benty Kai-Hwa Yao Petrik Clarberg Lucy Chen Simon Kallweit Tim Foley Matthew Oakes Conor Lavelle and Chris Wyman. 2020. The Falcor Rendering Framework.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3